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Abstract. The dynamical behaviour caused by dry friction is studied for a spring-block system
pulled with constant velocity over a surface. The dynamical consequences of a general type of
phenomenological friction law (stick-time-dependent static friction, velocity-dependent kinetic
friction) are investigated. Three types of motion are possible: stick–slip motion, continuous
sliding, and oscillations without sticking events. A rather complete discussion of local and
global bifurcation scenarios of these attractors and their unstable counterparts is present.

Coulomb’s laws [1] of dry friction have been well known for over 200 years. They state
that the friction force is given by a material parameter (friction coefficient) times the normal
force. The coefficient of static friction (i.e. the force necessary to start sliding) is always
equal to or larger than the coefficient of kinetic friction (i.e. the force necessary to keep
sliding at a constant velocity).

The dynamical behaviour of a mechanical system with dry friction is nonlinear because
Coulomb’s laws distinguish between static friction and kinetic friction. If the kinetic friction
coefficient is less than the static one,stick–slip motionoccurs where the sliding surfaces
alternately switch between sticking and slipping in a more or less regular fashion [1]. This
jerky motion leads to the everyday experience of squeaking doors and singing violins.

Even though Coulomb’s laws are simple and well established (many calculations in
engineering rely on these laws), they cannot be derived in a rigorous way because dry friction
is a process which operates mostly far from equilibrium. It is therefore no surprise that
deviations from Coulomb’s laws have often been found in experiments. Typical deviations
are as follows. (i) Static friction is not constant but increases with the sticking time [2, 3], i.e.
the time since the two sliding surfaces have been in contact without any relative motion. (ii)
Kinetic friction depends on the sliding velocity; for very large velocities, it increases roughly
linearly with the sliding velocity like in viscous friction. Coming from large velocities, the
friction first decreases, goes through a minimum, and then increases [3, 4]. In the case
of boundary lubrication (i.e. a few monolayers of some lubricant are between the sliding
surfaces) it decreases again for very low velocities (see figure 1) [5, 6]. The coefficient of
kinetic friction as a function of the sliding velocity therefore has at least one extremum.
The kinetic friction can exceed the static friction, but in the limit of zero sliding velocity it
is still less than or equal to the static friction.

The aim of this paper is to give a rather complete discussion of the nonlinear dynamics
of a single degree of freedom for anarbitrary phenomenologicaldry friction law in the
sense mentioned above. This goes beyond the discussion of specific laws found in the
literature [1, 3, 4, 6–9]. A phenomenological law for the friction force depends only on the
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(a) (b)

Figure 1. Schematical sketches of typical velocity-dependent kinetic friction laws for (a) systems
without and (b) systems with boundary lubrication.

Figure 2. A harmonic oscillator with dry friction.

macroscopic degrees of freedom. This implies that all microscopic degrees of freedom are
much faster than the macroscopic ones. At the end of this paper a simple argument will
be given on why this assumption will not always be valid. To reveal this invalidity on the
macroscopic level, it is therefore important to have acomplete knowledge of the dynamical
behaviour under the assumption that this timescale separation works.

There are two other important reasons for knowing the consequences of the different dry
friction laws. (i) Friction coefficients can only be measured within an apparatus (for example
the surface force apparatus [10] or the friction force microscope [11]). Below we will see
that the dynamical behaviour of the whole system is strongly determined by the friction
force and the properties of the apparatus. For example, stick–slip motion makes it difficult
to directly obtain the coefficient of kinetic friction as a function of the sliding velocity.
Thus, the influence of the measuring apparatus cannot be eliminated. (ii) Dry friction also
plays an important role in granular materials [12]. An open question there is whether or
not the cooperative behaviour of many interacting grains is significantly influenced by the
dynamical behaviour due to modifications of Coulomb’s laws.

The mechanical environment (e.g. the apparatus) of two sliding surfaces may have
many macroscopic degrees of freedom. The most important one is the lateral one. Here only
systems are discussed which can be well described by this single degree of freedom. Figure 2
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schematically shows the apparatus. It is described by a harmonic oscillator where a block
(massM) is connected via a spring (stiffnessκ) to a fixed support (see figure 2). The block
is in contact with a surface which slides with constant velocityv0. The interaction between
the block and the sliding surface is described by a sticking-time-dependent static friction
force FS(tstick) and a velocity-dependent kinetic friction forceFK(v). For the equation of
motion we have to distinguish whether the block sticks or slips. If it sticks, its positionx

grows linearly in time until the force in the spring (i.e.κx) exceeds the static frictionFS .
Thus

ẋ = v0 if |x| 6 FS(t − tr )/κ (1a)

where tr < t is the time at which the block has stuck again after a previous sliding state.
If the block slips, the equation of motion reads

Mẍ + κx = sign(v0− ẋ)FK(|v0− ẋ|) (1b)

if ẋ 6= v0 or |x| > FS(0)/κ where sign(x) denotes the sign ofx.
We start our investigation with Coulomb’s laws of constant static and kinetic friction.

As long asẋ < v0 the system behaves like an undamped harmonic oscillator with the
equilibrium position shifted by the amount ofFK/κ. Thus, there are infinitely many
oscillatory solutions. Below we will see that some of them may survive in the case of
velocity-dependent kinetic friction. The equilibrium position of the block isx = FK(v0)/κ.
It is called thecontinuously sliding state.

Every initial state which would lead to an oscillation with a velocity amplitude exceeding
v0 leads in afinite time to stick–slip motion. Independent of the initial condition, the slips
always start withx = FS/κ and ẋ = v0. Thus, the stick–slip motion defines an attractive
limit cycle in phase space. This is not in contradiction with the fact that the system behaves
otherwise like an undamped harmonic oscillator. The reason for that is that a finite bounded
volume in phase space is contracted onto a line if it hits that part in phase space which
is defined by (1a). Stick–slip motion requires a kinetic frictionFK which is strictly less
than the static one. Usually the sticking timetstick = 2(FS − FK)/(κv0) is much larger
than the slipping timetslip = 2(π − arctan[(FS −FK)v−1

0 (κM)−1/2])
√
M/κ. The maximum

amplitude of the stick–slip oscillation (i.e. maxt x(t)) is a monotonically increasing function
of v0 which starts atFS/κ for v0 = 0. This is also true for a velocity-dependent kinetic
friction force.

The unmodified Coulomb’s law leads to a coexistence of the continuously sliding state
and stick–slip motion for any value of the sliding velocityv0. In the more general case of
a velocity-dependent kinetic friction this bistability still occurs but in a restricted range of
v0. Especially, there will always be a critical velocityvc above which stick–slip motion
disappears. This is an everyday experience: squeaking of doors can be avoided by moving
them faster.

In order to be more quantitative we solve the equation of motion for a linear dependence
of FK on v, i.e. FK(v) = FK0 + γ v, with γ > 0. Equation (1b) becomes the equation of
a damped harmonic oscillator which can be easily solved. Instead of a continuous family
of oscillatory solutions we have an attractive continuously sliding state. Stick–slip motion
disappears if the trajectory withx(0) = FS/κ and ẋ(0) = v0 never sticks fort > 0. The
critical velocity v0 = vc is defined byx(tslip) = FK0/κ and ẋ(tslip) = v0. It leads to two
nonlinear algebraic equations fortslip and vc. For γ � √Mκ the solution can be given
approximately:

vc = FS − FK0√
2πγ
√
κM

+O(√γ ). (2)
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The critical velocityvc plays an important role in the discussion of the nature of stick–slip
motion, because its measurement tells us indirectly something about the mechanisms of dry
friction (see the discussion in [6]).

Next we discuss a general non-monotonicFK(v) like the examples shown in figure 1.
The static frictionFS is still assumed to be constant. The continuously sliding state exists
for all values ofv0 but it is only stable ifF ′K ≡ dFK(v0)/dv0 > 0. At an extremum of
FK(v) the stability changes and a Hopf bifurcation occurs. Near the extremum and for
small deviations from the continuously sliding state the dynamics of

x(t)− FK(v0)

κ
= A(t)ei

√
κ/Mt + c.c. (3)

is governed by the amplitude equation (normal form) [13]

dA

dt
= − F

′
K

2M
A−

(
κF ′′′K
4M2

+ i

(
F ′′K
M

)2√
κ

M

)
|A|2A. (4)

If the third derivative of the kinetic friction at an extremum is positive, the Hopf bifurcation
is supercritical, and in addition to the well known attractors mentioned above, another type
of attractor appears. Here it is called theoscillatory sliding state. It is a limit cycle where the
maximum velocity always remains less thanv0. Thus the block never sticks. Its frequency
is roughly given by the harmonic oscillator of the left-hand side of (1b). The second
derivative of the kinetic friction is responsible for nonlinear frequency detuning. Note that
the frequency of the stick–slip oscillator is usually much smaller than the frequency of the
oscillatory sliding state. This oscillatory state is similar to the limit cycle of Rayleigh’s
equationü+ ε(u̇3− u̇)+ u = 0 [13], in fact, Rayleigh’s equation is a special case of (1b).
Depending on the kinetic friction, several stable and unstable limit cycles may exist. By
varying v0 they are created or destroyed in pairs due to saddle-node bifurcations.

It should be noted that the Hopf bifurcation described by (4) is not related to the Hopf
bifurcation observed by Heslotet al [3] which occurs in a regime (called the creeping
regime) where (1a) is not applicable (see also the discussion below about the validity of
dry friction laws).

An oscillatory sliding state exists only if its maximum velocity is smaller than the sliding
velocity v0 because of the sticking condition (1a). How does the interplay of the oscillatory
sliding states and the sticking condition lead to stick–slip motion? In order to answer
this question we calculate the backward trajectory of the point limε→0(FK(0)/κ, v0− ε) in
accordance with (1b). Three qualitatively different backward trajectories are possible.

(1) The backward trajectory hits the sticking condition. Together they define a bounded
set of initial conditions leading to non-sticking trajectories. The boundary of this set is
called the special stick–slip boundary; it is not a possible trajectory but it separates between
the basins of attraction of the stick–slip oscillator and the non-stick–slip attractors.

(2) The backward trajectory spirals inwards towards an unstable oscillatory or
continuously sliding state. Again all initial states outside these repelling states are attracted
by a stick–slip limit cycle.

(3) The backward trajectory spirals outward towards infinity, and stick–slip motion is
impossible.

Two types of local bifurcations are possible: if the backward trajectory changes from
case 1 to case 3 the stick–slip limit cycle annihilates with the special stick–slip boundary.
For changes from case 1 to case 2 the special stick–slip boundary is either replaced by an
unstable continuous or oscillatory sliding state or it annihilates with a stable continuous or
oscillatory sliding state. A change from case 2 to case 3 is not possible. Figure 3 shows,
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Figure 3. Typical bifurcation scenarios for a particular kinetic friction forceFK(v) of the type
shown in figure 1(b). The following function has been chosenFK(v) = v[γ1 + γ2 + (γ2 −
γ1)(v− ṽ)/

√
(1v)2 + (v − ṽ)2]/2, with γ1 = 3, γ2 = 0.1, ṽ = 0.2, and1v = 0.05. The results

are obtained by numerically integrating the equation of motion (1). The other parameters are
FS = 1,M = 40, andκ = 1. Full (dotted) curves indicate stable (unstable) continuously sliding
states (CS), oscillatory sliding states (OS), or stick–slip motions (SS). The chain curve indicates
the special stick–slip boundary.

for a particular choice ofFK(v), both types of bifurcations. Here the first bifurcation type
occurs atv0 ≈ 0.059, 0.082, and 0.966. The second type occurs atv0 ≈ 0.162 and 0.785.
This example shows that for increasingv0 stick–slip motion can disappear and reappear
again.

Besides the well known bistability between stick–slip motion and continuous sliding [3],
multistability between one continuously sliding state, several oscillatory sliding states, and
one stick–slip oscillator are possible (see figure 3). Eventually for large sliding velocities
all attractors except that of the continuously sliding state will disappear because the kinetic
friction has to be an increasing function for sufficiently large sliding velocities.

The strongly overdamped limit (i.e.|dFK(v)/dv| �
√
κM for any v except in tiny

intervals around the extrema) leads to a separation of timescales. From an arbitrary point
(x, ẋ) in phase space witḣx < v0 the system moves very quickly into the point(x, v) where
v is a solution ofκx = FK(v0−v) with F ′K(v0−v) > 0. Points on the curveκx = FK(v0−ẋ)
with F ′K < 0 are unstable. They separate basins of attraction of different solutionsv. After
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the fast motion has decayed the system moves slowly on the curveκx = FK(v0− ẋ). The
direction is determined by the sign ofẋ. It either reaches a stable continuously sliding
state, or, near an extremum ofFK , it jumps suddenly to another branch of the curve or to
the sticking condition. For kinetic friction laws of the form shown in figure 1(b) with v0

between the two extrema, we get an oscillatory sliding state. It is a relaxation oscillation
which may be difficult to distinguish from a stick–slip oscillation. In the case of a friction
law with a single minimum atv = vm as shown in figure 1(a) we get stick–slip motion
for v0 < vm [7]. In the strongly overdamped limit any multistability disappears except near
the extrema ofFK(v). The experiments of Yoshizawa and Israelachvili [14] are consistent
with the assumption that the system is in a strongly overdamped limit with a friction law
as shown in figure 1(a) [7].

In order to discuss the influence of a stick-time-dependent static friction on the stick–slip
behaviour we define a stick–slip mapxn+1 = T (xn), wherexn is the position of the block
just before slipping. For constant static friction the map readsT (x) = FS/κ. The position
just at the time of the slip-to-stick transition is defined byxsn. It is a function ofxn, i.e.
xsn = g(xn), whereg is usually a monotonically decreasing function. The sticking timetstick

n

is the smallest positive solution of

FS(t
stick
n )

κ
= xsn + v0t

stick
n . (5)

This defines a functiontstick
n = h(xsn) which is a monotonically decreasing function due to

F ′S > 0. Thus the stick–slip map is given byT (x) = FS(h(g(x)))/κ. If the map has one
fixed point, then stick–slip motion exists.

ForFK = constant= FS(0), stick–slip motion disappears ifv0 > vc = supt>0 2[FS(t)−
FS(0)]/(κt). For a non-convexFS(t), the supremum occurs at a non-zero value of the
sticking time leading to a saddle-node bifurcation of a stable and an unstable fixed point
of the stick–slip map. Atv0 = vc the stick–slip motion has a finite amplitude, in contrast
to the case of a convexFS(t) [8]. BecauseT is a monotonically increasing function, limit
cycles or even chaos are not possible. If the slip-to-stick transition does not happen at
the first time whenẋ becomes equal tov0 (because of|xsn| > FS(0)/κ) chaotic motion
may occur [9]. In this case we get a non-monotonicT due to a non-monotonicg. Such
over-shooting is only possible ifFS(∞)/FS(0) becomes relatively large. For example, for
a constant kinetic friction over-shooting occurs ifFS(∞)/FS(0) > 1+ FK(0)/FS(0). For
most realistic systems this condition is not satisfied. Note that the possibility of chaos is
not in contradiction to the fact that the equation of motion (1) with constantFS cannot
show chaotic motion. But the retardation ofFS turns (1) into a kind of differential-delay
equation.

Using phenomenological dry friction means that we treat dry friction as an element in
a mechanical circuit with some nonlinear velocity-force characteristic such as, say, a diode
in an electrical circuit. This treatment is justified as long as the macroscopic timescales are
much larger than any timescale of the internal degrees of freedom of the interacting solid
surfaces. But there is one internal timescale which diverges if the relative velocity between
the surfaces goes to zero: it is given by the ratio of a characteristic lateral length scale of
the surface and the relative sliding velocity. Thus, any kinetic friction lawFK(v) becomes
invalid if

v . microscopic length scale

macroscopic timescale
. (6)

The characteristic length scale ranges from several micrometres to several metres. It may
be the size of the asperities, the size of the contact of the asperities, the correlation length
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of surface roughness, or an elastic correlation length. This limitation of any dry friction
law does not concern oscillatory sliding states and continuously sliding states, as long as
their relative sliding velocity always stays much larger than the critical velocity (6). But the
transition between sticking and sliding in a stick–slip motion may be strongly affected by
the fact that just after stick-to-slip transitions and just before slip-to-stick transitions, details
of the interface dynamics become important. One may expect that the importance of these
details increases when the maximum slipping velocity decreases. For example, Heslotet
al [3] experimentally found a completely different behaviour when the maximum relative
sliding velocity during a slip was below the critical value (6).

In this paper the nonlinear dynamics of a harmonic oscillator sliding over a solid surface
has been discussed under the assumption that dry friction can be described by a velocity-
dependent kinetic friction and a sticking-time-dependent static friction. Besides the well
known continuously sliding state and the stick–slip oscillator, an oscillatory sliding state
without sticking has been found. All typical bifurcation scenarios of these states are shown
in figure 3.
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